The Enzyme-Mediated Direct Reversal of a Dithymine Photoproduct in Germinating Endospores
نویسندگان
چکیده
Spore photoproduct lyase (SPL) repairs a special thymine dimer, 5-thyminyl-5,6-dihydrothymine, which is commonly called spore photoproduct, or SP, in germinating endospores. SP is the exclusive DNA photo-damaging product found in endospores; its generation and swift repair by SPL are responsible for the spores' extremely high UV resistance. Early in vivo studies suggested that SPL utilizes a direct reversal strategy to repair SP in the absence of light. Recently, it has been established that SPL belongs to the radical S-adenosylmethionine (SAM) superfamily. The enzymes in this superfamily utilize a tri-cysteine CXXXCXXC motif to bind a [4Fe-4S] cluster. The cluster provides an electron to the S-adenosylmethionine (SAM) to reductively cleave its C5'-S bond, generating a reactive 5'-deoxyadenosyl (5'-dA) radical. This 5'-dA radical abstracts the proR hydrogen atom from the C6 carbon of SP to initiate the repair process; the resulting SP radical subsequently fragments to generate a putative thymine methyl radical, which accepts a back-donated H atom to yield the repaired TpT. The H atom donor is suggested to be a conserved cysteine141 in B. subtilis SPL; the resulting thiyl radical likely interacts with a neighboring tyrosine99 before oxidizing the 5'-dA to 5'-dA radical and, subsequently, regenerating SAM. These findings suggest SPL to be the first enzyme in the large radical SAM superfamily (>44,000 members) to utilize a radical transfer pathway for catalysis; its study should shed light on the mechanistic understanding of the SAM regeneration process in other members of the superfamily.
منابع مشابه
A minute amount of s-puckered sugars is sufficient for (6-4) photoproduct formation at the dinucleotide level.
The di-2'-α-fluoro analogue of thymidylyl(3',5')thymidine, synthesized to probe the effect of a minimum amount of S conformer on the photoreactivity of dinucleotides, is endowed with only 3% and 8% of S sugar conformation at its 5'- and 3'-end, respectively. This analogue gives rise to the (6-4) photoproduct as efficiently as the dithymine dinucleotide (74% and 66% at the 5'- and 3'-end, respec...
متن کاملInsights into the Activity Change of Spore Photoproduct Lyase Induced by Mutations at a Peripheral Glycine Residue
UV radiation triggers the formation of 5-thyminyl-5,6-dihydrothymine, i.e., the spore photoproduct (SP), in the genomic DNA of bacterial endospores. These SPs, if not repaired in time, may lead to genome instability and cell death. SP is mainly repaired by spore photoproduct lyase (SPL) during spore outgrowth via an unprecedented protein-harbored radical transfer pathway that is composed of at ...
متن کاملDirect H atom abstraction from spore photoproduct C-6 initiates DNA repair in the reaction catalyzed by spore photoproduct lyase: evidence for a reversibly generated adenosyl radical intermediate.
Spore photoproduct (SP) lyase, which catalyzes the direct reversal of SP (5-thyminyl-5,6-dihydrothymine) to thymine monomers, is the only identified nonphotoactivatable pyrimidine dimer lyase. Unlike DNA photolyase, SP lyase does not contain a flavin cofactor and does not require light for activation. Instead, preliminary studies point to the presence of an iron-sulfur cluster in SP lyase and t...
متن کاملEffect of sonic stimulation on Bacillus endospore germination.
This study investigates the effect of sonic stimulation on Bacillus endospore germination. Germinating endospores in a microtiter plate were exposed to audible sound wave generated by an array of piezoelectric transducers. In situ germination kinetics was measured by terbium-dipicolinate fluorescence assay, optical density measurement and phase contrast microscopy. Fluorescence results revealed...
متن کاملSpore photoproduct lyase catalyzes specific repair of the 5R but not the 5S spore photoproduct.
Bacterial spores are remarkable in their resistance to chemical and physical stresses, including exposure to UV radiation. The unusual UV resistance of bacterial spores is a result of the unique photochemistry of spore DNA, which results in accumulation of 5-thyminyl-5,6-dihydrothymine (spore photoproduct, or SP), coupled with the efficient repair of accumulated damage by the enzyme spore photo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2013